

Water Budget of the Upper Chehalis River Basin

August 24, 2018
Chehalis Basin Partnership
Rochester, Washington

U.S. Department of the Interior U.S. Geological Survey

Andy Gendaszek
agendasz@usgs.gov
USGS – WA Water Science Center
Tacoma, Washington

Outline

- Groundwater in the Chehalis Basin Objectives
- Previous Studies
 - Groundwater Surface/Water Interactions
 - Hydrogeologic Framework
- Recently Released Water Budget
- Next Steps

≅USGS

Groundwater Studies in the Chehalis Basin – Objectives and Recent Studies

- 2007 Basin-Wide Seepage Run: Groundwater/Surface-Water Interactions (Ely and others, 2008)
- Well Inventory and Hydrogeologic Framework (Gendaszek, 2011)
- Water Budget (Gendaszek and Welch, 2018)

Data Collection

Conceptual Model

Future Numerical Model

2007 Basin-Wide Seepage Run (Ely and others, 2008)

2007 Basin-Wide Seepage Run (Ely and others, 2008)

Scientific Investigations Report 2008-5180

U.S. Department of the lines

Well Inventory and Hydrogeologic Framework (Gendaszek, 2011)

Upper Chehalis Basin Water Budget

- Water Budget: $Q_{in} = Q_{out} + \Delta S$
- Estimate water budget components
 - Precipitation
 - Evapotranspiration
 - Surface Runoff
 - Groundwater Recharge
 - Water Use
- Estimate spatial distribution of groundwater recharge for future groundwater flow model

Upper Chehalis Basin Water Budget: Methods

- USGS Soil-Water Balance (SWB) Model
 - Accounts for spatial distribution of soil properties and land cover
 - Daily calculation of evapotranspiration, groundwater recharge, and surface runoff
 - 500-foot grid cell
- Hydrograph Separation
 - USGS Gage at the Chehalis River Near Grand Mound
 - Daily calculation of surface-runoff and baseflow
- Groundwater and Surface-Water Use
 - Calculated from furnished records
 - Estimated for systems without records

Study Area: Chehalis River Upstream of Grand Mound

Soil Water Balance Model Results: WY01 – WY15

Water Budget: Fate of Precipitation

Fate of precipitation	Inches per year	Percentage of total	
Surface runoff	21.6		
Evapotranspiration	25.6	35.3	
Groundwater recharge	22.0	30.3	
Interception	3.6	5.0	
Change in soil moisture	-0.2	-0.3	
Total precipitation	72.6	100.0	

Hydrograph Separation – Baseflow

Hydrograph Separation – Surface Runoff

Comparison of SWB (Baseflow) to Hydrograph Separation (Recharge)

Water Budget: Fate of Recharge

Fate of recharge	Soil-Water-Balance model		HYSEP base-flow separation	
	Inches per year	Percentage of total	Inches per year	Percentage of total
Natural discharge	21.79	99.0	25.6	99.2
Group A well pumpage	0.06	0.3	0.06	0.2
Self-supply and Group B well pumpage	0.05	0.2	0.05	0.2
Irrigation well pumpage	0.10	0.5	0.10	0.4
Total recharge	22.0	100.0	25.81	100.0

Summary and Acknowledgements

- Groundwater/Surface-Water Interactions and Hydrogeologic Framework (Ely and others, 2008; Gendaszek, 2011)
- Water Budget of Upper Chehalis Basin
 - Equal parts of precipitation is lost to evapotranspiration, becomes surface runoff, and recharges groundwater
 - Water use is a small fraction of groundwater recharge, but its effect on surface-water and groundwater levels is not known
- Groundwater flow and exchange with surface waters may be simulated with a numerical model to understand effects of groundwater use
- Project was funded jointly by the City of Centralia and the U.S. Geological Survey

Publications

- Gendaszek, A.S., and Welch, W.B., 2018, Water budget of the upper Chehalis River Basin, southwestern Washington: U.S. Geological Survey Scientific Investigations Report 2018-5084, 17 p., https://doi.org/10.3133/sir20185084
- Gendaszek, A.S., and Welch, W.B., 2018, Soil Water Balance Model of Upper Chehalis River Basin, Southwestern Washington: U.S. Geological Survey data release, https://doi.org/10.5066/F78G8K1F
- Gendaszek, A.S., 2011, Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington: U.S. Geological Survey Scientific Investigations Report 2011-5160, 42 p.
- Ely, D.M., Frasl, K.E., Marshall, C.A., and Reed, Fred, 2008, Seepage investigation for selected river reaches in the Chehalis River basin, Washington: U.S. Geological Survey Scientific Investigations Report 2008-5180, 12 p.

