
Chehalis Basin Strategy Programmatic SEPA Draft EIS

History of Flooding

- I-5 closed in 1990, 1996, 2007, 2009
- Five largest flood events occurred since 1986

History of Habitat Degradation

- Harvest has been limited by poor runs over the last 30 years
- Habitat productivity has been degraded by up to 87%

Evaluating Options

- Programmatic
 Environmental Impact
 Statement (EIS)
- Evaluates potential effects – positive and negative
- Programmatic EIS differs from project level EIS

ng Beach

WASHINGTON

4

Purpose and Need

The Chehalis Basin suffers from both flooding and degradation of aquatic species.

The Chehalis Basin Strategy will provide a long-term, integrated approach to substantially reduce damages from major floods and restore degraded aquatic species habitat in the Basin.

Objectives

Reduce the following conditions caused by a major flood:

- 1. Threats to human health and safety, including access to critical medical facilities
- 2. Flood damage to commercial and residential properties
- 3. Flood damage to agricultural properties, livestock and crops
- 4. Disruption in transportation systems, including closures of Interstate 5 and local and regional transportation systems
- 5. Disruption to industry, commercial businesses, and public services

Protect and restore aquatic species habitat function to:

- 1. Improve resiliency of natural floodplain processes and ecosystems from the effects of climate change, including warming stream temperatures, low flows, and other effects
- 2. Increase abundance of native aquatic species, including increased populations of healthy and harvestable salmon and steelhead
- 3. Reduce the potential for future Endangered Species Act listings
- 4. Enhance tribal and non-tribal fisheries

Actions Being Considered

- Flood Damage Reduction
- Habitat Restoration

Local-scale Flood Damage Reduction Actions

- Raising structures, building walls
- Farm Pads

WASHINGTON

Local Projects

Shelton

Potter

Lacey

Local-scale Flood Damage Reduction Actions

Land use management improvements

 Early warning system improvements

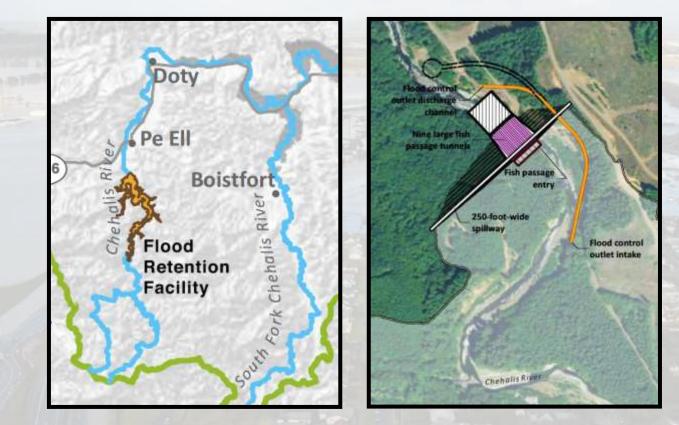
Large-scale Actions

- I-5 projects
- Walls and Levees

Large-scale Actions

Restorative Flood Protection -

 Re-establish the natural flood storage capacity by reversing landscape changes that contribute to downstream flooding and erosion

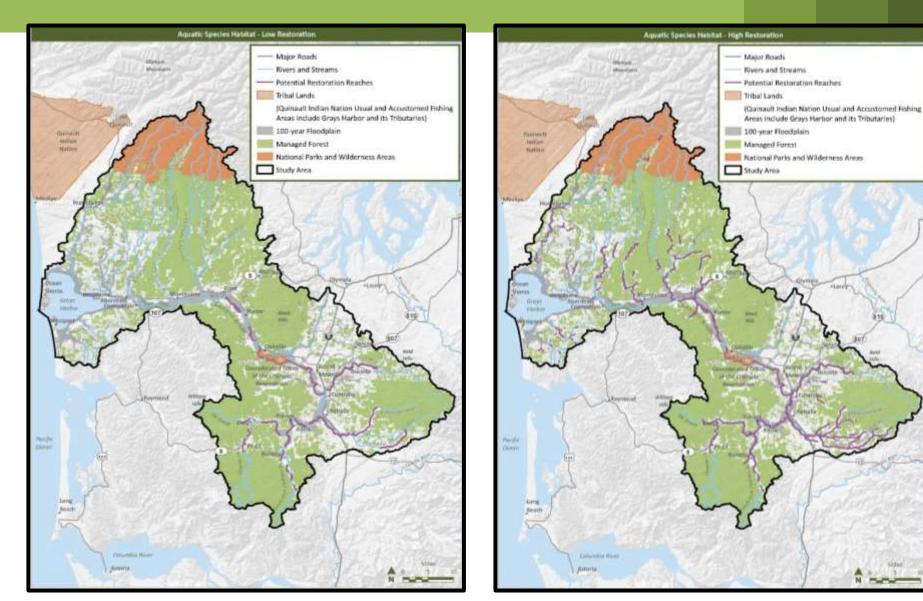

Restorative Flood Protection

67.00 To bottom land of Chehalis river, this bottom Do subject to in undation from 3 to spect in depth In the winter season

Large-scale Actions

- Flood Retention Only (FRO)
- Flood Retention and Flow Augmentation (FRFA)

Dam and Reservoir Design and Operations Objectives


- Reduce flood damages
- Maintain stream processes
- Maintain slope stability in reservoir
- Provide winter storage for summer flow augmentation and temperature moderation (FRFA)
- Design for debris management in reservoir
- Maintain fish passage to the extent possible

Aquatic Species Habitat Actions

• Basin-wide scale: Unprecedented Level of Effort

Range of Actions Evaluated

Overview of Significant Adverse Impacts

No Action Alternative

- Increased peak flows and frequency of winter storms = more frequent and greater flood damage
- Sea level rise = increased flooding in lower basin
- Built Environment:
 - \circ Land Use
 - Recreation
 - \circ Transportation
 - Public Services and Utilities
 - Environmental Health and Safety
- Historic, Cultural, and Tribal Resources

No Action Alternative

Potential Response in Salmon Abundance in the Chehalis Basin to Climate Change

SPECIES (CURRENT HABITAT POTENTIAL)	CHANGE FROM CURRENT CONDITION (PERCENT)
Coho salmon (40,642)	-55%
Fall-run Chinook salmon (25,844)	-27%
Winter/fall-run chum salmon (190,550)	-4%
Spring-run Chinook salmon (2,146)	-87%
Winter-run steelhead (6,800)	-55%

- Water Quality
 - \circ Within the reservoir
 - \odot Downstream of the dam
- Geology and Geomorphology
- Wetlands and Vegetation
- Fish and Wildlife
- Historic, Cultural, and Tribal Resources

Summary of Long-term Significant Adverse Impacts

- Conversion of the Chehalis River from a freeflowing river to a permanent reservoir impoundment (FRFA facility only)
- Increase in temperature and decrease in DO
- Landslide potential around the reservoir footprint
- Damage to the dam if an earthquake were to occur on the CSZ to the west of the Flood Retention Facility or Doty Fault Zone to the north
- Geomorphic impacts on the Chehalis River and its floodplain downstream of the dam due to changes in sediment and wood transport processes

Summary of Long-term Significant Adverse Impacts

- Permanent loss of approximately 68 acres (FRO facility) and 98 acres (FRFA facility) of wetlands
- Permanent loss of vegetation: 6 acres for the FRO facility (in the dam footprint) and 720 acres for the FRFA facility (9 acres in the dam footprint, 711 acres in the reservoir area)
- Reduced fish passage for adult and juvenile salmon and trout
- Reduced habitat for fish and wildlife species, including instream and off-channel habitat in the reservoir area
- Change in visual quality of the area due to clearing of vegetation

Water Quality Impacts (FRO Reservoir)

- Up to a nearly 4°C increase in summer water temperatures (over existing conditions) could occur along the mainstem at the dam site
- Up to a 5°C increase was predicted in the Crim Creek tributary (upstream of the dam)
- Lower DO concentrations

Water Quality Impacts FRFA Reservoir

- Temperature (Reservoir pool would have varying water temperatures depending on the season and depth within the reservoir)
- Dissolved Oxygen

Fish Impacts

- Loss of habitat function within the reach of the Chehalis River inundated upstream of the dam for cool, swift-water associated fish species, including loss of salmon spawning habitat
- Partial reduction in fish survival and potential interruptions to migration due to passage impediments, including salmon and lamprey spawning migrations
- Changes to fish habitat-forming processes and water quality downstream of the dam
- Exposure of juvenile salmonids that use the FRFA reservoir for rearing to predators that may thrive in the reservoir

Avoidance and Minimization for Water Quality Impacts

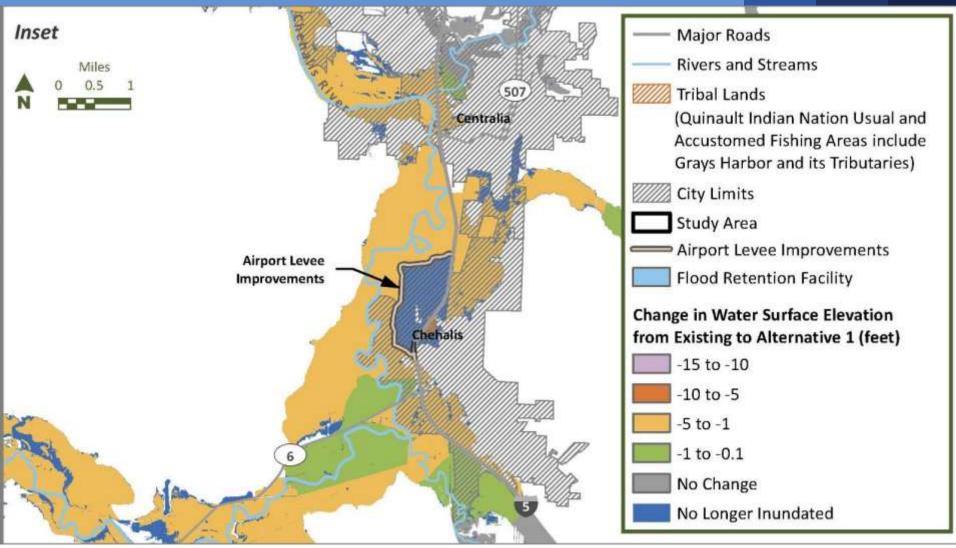
- Managing FRFA facility operations to optimize cool temperatures and flow benefit for aquatic species (in the Chehalis River) and maintain DO conditions that are compliant with state water quality criterion of > 9.5 mg/L.
- To address losses of riparian shade within the reservoir and downstream of the dam, plant riparian vegetation that is more flood tolerant within the FRO or FRFA reservoir footprint.
- A Flood Retention Facility may cause adverse impacts that cannot be fully mitigated by compensatory actions

Potential Mitigation

- Reservoir Operations and Management Plan
 - $\circ~$ Wood and sediment management
 - $\circ~$ Water quality and flow moderation
- Reservoir drawdown rates that avoid or minimize landslide occurrences
- Design to withstand the effects of earthquakes and shaking on the CSZ and other nearby faults
- Compensatory wetland mitigation
- Pre-and Post-construction Vegetation Management Plan
- Fisheries Management Plan (fish passage)

Overview of Benefits

Summary of Long-term Beneficial Effects

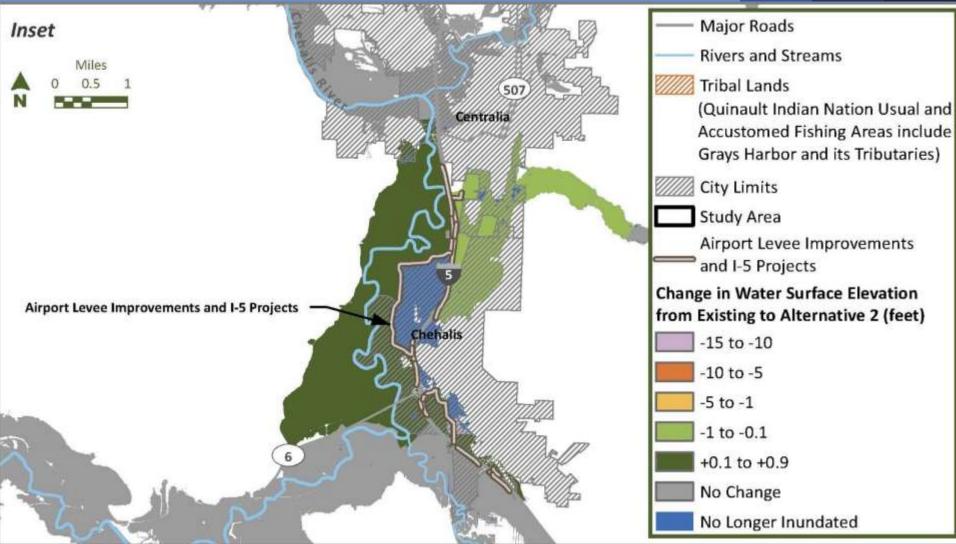

- Substantial flood damage reduction in downstream areas
 - \circ Flood level reduced during 100-year flood
 - Number of flooded high value structures reduced substantially
 - Corresponding beneficial effects to land use, recreation, transportation, public services and utilities, and environmental health and safety
- For FRFA, temperature reduction in Chehalis River downstream of the dam to confluence of the Skookumchuk River

Reduction in Peak Elevation

Peak Flood Elevation Comparison of the Chehalis River (100-year flood)

LOCATION	EXISTING PEAK ELEVATION (FT)	PEAK ELEVATION WITH FLOOD RETENTION (FT)	DIFFERENCE IN PEAK ELEVATION (FT)
Near Doty	319.2	308.1	-11.1
Downstream of South Fork	222.2	217.1	-5.1
Along Airport Levee	180.5	179.0	-1.5
Behind Airport Levee	180.3	173.3	-7.0
Mellen Street	177.7	176.0	-1.7
Galvin Road	168.2	166.5	-1.7
Grand Mound	147.5	146.6	-0.9
Near Rochester	124.4	123.4	-1.0
Montesano	18.6	17.9	-0.7
Near Doty	319.2	308.1	-11.1

Alternative 1 – Upper Chehalis Basin (100-year Flood)


<u>Impacts</u>

- Water quantity
- Geology and Geomorphology
- Wetlands and Vegetation
- Historic, Cultural, and Tribal Resources

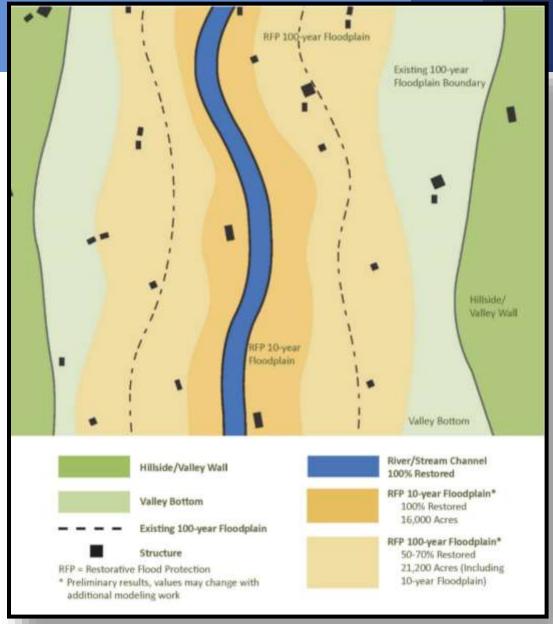
Potential Mitigation

Compensatory wetland mitigation

Alternative 2 – Upper Chehalis Basin (100-year Flood)

- No significant adverse impacts
- Historic, Cultural, and Tribal Resources

Overview of Significant Adverse Impacts


- Water quantity
- Wetlands and Vegetation
- Fish and Wildlife
- Visual Quality
- Land Use
- Transportation
- Environmental Health and Safety
- Public Services and Utilities
- Historic, Cultural, and Tribal Resources

Restorative Flood Protection Treatment Areas

Restorative Flood Protection

Floodplain

38

Conceptual Image of Typical Floodplain

Conceptual Image Following Restoration Flood Protection Implementation

Land Use Impacts

- Increase flooding on up to 21,000 acres
- Convert up to 16,000 acres of managed forest land to agriculture, rural residential, public services, and commercial uses
- Approximately 462 high value structures would experience more flooding

Transportation Impacts

- Increase the closure of:
 - **SR 6**
 - SR 506
 - **SR 508**
- Closures of I-5 and flooding of local roads and the Chehalis-Centralia Airport would continue during 100-year flood
- Roads in some locations not currflooded under current 100 year flood conditions would be flooded

Environmental Health and Safety Impacts

- Higher flood levels could close roads for longer periods in the RFP treatment area, and may prevent access for emergency response
- Access to some of the rural areas within the RFP treatment area is already limited under existing conditions (increased flood event frequency)
- Impacts would vary within the RFP treatment area depending on how well emergency response could be maintained

Public Services and Utilities Impacts

- Relocation of agricultural, residential, and commercial land uses out of the 10-year floodplain would require disconnection and decommissioning of existing public utilities in these areas
- No direct increased demand for public services and utilities is expected, but relocation of those services and utilities could require extension of utilities including electricity, water supplies, and sewer services

Land Use Mitigation

- This action includes:
 - Stay-in-place mitigation flood proofing, elevation of structures, farm pads, drainage improvements, or relocation of homes and structures to more upland portions of the same parcel.
 - Relocation support move floodplain land uses to upland areas.
 - Buy-outs –buy-out options for property.
 - Permanent conservation easements to compensate property owners for lost use of land.

Alternative 4

Potential Mitigation

- Avoid treatments where most significant impacts would occur and in areas with little downstream benefit
- Avoid and minimize wetland and vegetation impacts in conversion areas
- Decommission and floodproof

Overview of Benefits

Summary of Benefits

- Flooding would be reduced in the Chehalis and Centralia areas where flooding would be reduced by up to 1 foot
- By design, the RFP treatment actions aim to restore geomorphic processes to a condition representative of the Chehalis Basin prior to floodplain development and channel modification
- Increased diversity and extent of riparian and floodplain vegetation communities
- Increase well-distributed high quality key habitats such as wetlands, off-channel habitats, and side channel networks used heavily by coho salmon but also by spring-run Chinook salmon and steelhead
- Stream temperatures could generally be expected to be lowered compared to existing conditions

Q100 Flood Level Reduction Near Centralia/Chehalis

		100-YEAR FLOOD			
LOCATION	RIVER MILE CROSS SECTION	EXISTING CONDITIONS WSE (FT)	RESTORATIVE ACTIONS WSE (FT)	CHANGE IN WSE (FT)	
Labree Road (Newaukum)	RM 4.11	206.4	206.1	-0.3	
Newaukum Confluence	RM 75.2	185.2	184.1	-1.0	
Along Airport Levee	RM 71.49	180.5	180.1	-0.4	

Vertical datum = North American Vertical Datum of 1988 (NAVD88) ft = foot RM = river mile WSE = water surface elevation

Alternative 4 – Upper/Middle Chehalis Basin (100-year Flood)

_	Major Roads			
-	Rivers and Streams			
	City Limits			
Change	in Water Surface Elevation	from Existing to Altern	ative 4	(feet)
	-2.9 to -1			
	-1 to -0,1			
	-0.1 to 1	Miles		
	+1 to 10.3	0 0.25 0.5	1	
	No Longer Inundated		_	N

50

Next Steps

- Draft Programmatic EIS released September 29, 2016
- 30-day public comment period, closes October 31, 2016
- Open House & Hearings, other outreach
- Governor Inslee and legislature will recommend actions to move forward at the end of the year
- Final EIS in 2017

WASHINGTO

50